K-THEORY OF EILENBERG-MAC LANE SPACES AND CELL-LIKE MAPPING PROBLEM

A. N. DRANISHNIKOV

ABSTRACT. There exist cell-like dimension raising maps of 6-dimensional manifolds. The existence of such maps is proved by using K-theory of Eilenberg-Mac Lane complexes.

1. Introduction

One of the main notions of geometric topology is the notion of cell-like map. The reason is that the cell-like maps between closed manifolds of dimension $\neq 3$ can be approximated by homeomorphisms [Si, Q]. This statement in dimension 3 implies the Poincaré conjecture and, of course, it is not proved. In dimension 3 a weaker statement is true [Ar]. Cell-like maps of manifolds often are obtained as decompositions maps. In that case the image is not necessarily a manifold. It is only a homology manifold. R. D. Edwards proved [E1] that for $n \geq 5$ if the decomposition space X is finite dimensional and has additionally the "Disjoint Disk Property" introduced by Cannon [C], then X is a manifold and more than that the quotient map can be approximated by homeomorphisms. Then R. D. Daverman [Da] derived from Edwards' theorem that if the decomposition space X of cell-like decompositions of manifolds is a finite-dimensional one then $X \times \mathbb{R}^2$ is a manifold. Now the following problem is natural.

Cell-like mapping problem. Is the image of a cell-like map of an *n*-manifold always finite dimensional?

Recall that a map between compacta $f: Y \to X$ is called cell-like if the preimage of each point, $f^{-1}(x)$, can be embedded in a manifold as a cellular subset = intersection of a decreasing system of closed topological cells. Note that a cell-like map is always surjective. The cell-like problem arose after Bing's works on decompositions of manifolds appeared [B1, B2] and it turned out to be that [E2] the cell-like problem is equivalent to a very old problem of Alexandroff in homological dimension theory [A, W] (see also the surveys [D-S, D1, M-R]).

In [K-W] it was proved that the cell-like mapping problem has an affirmative answer for 3-dimensional manifolds. Then by using results of Edwards and Walsh and some computations in K-theory [B-M, A-H] an example of a

Received by the editors March 29, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 55M10, 57Q55.

Key words and phrases. Cell-like map, cohomological dimension, Eilenberg-Mac Lane space.

The author was partially supported by the U. S. Army Research Office through the Mathematical Sciences Institute of Cornell University.

cell-like map $\phi\colon I^7\to Y$ of the 7-dimensional cube with infinite dimensional range Y was constructed in [D2, D1]. Edwards' theorem [W] claims that for every compactum X with cohomological dimension $\operatorname{c-dim}_{\mathbb{Z}} X \leq n$ with respect to the integers as coefficients there exists a cell-like map $f\colon Z\to X$ of an n-dimensional compactum Z onto X. Call such a map an Edwards-Walsh resolution. The map $\phi\colon I^7\to Y$ was obtained as a quotient map generated by embedding an Edwards-Walsh resolution Z of some compactum X in 7-dimensional Euclidean space. The compactum X with the properties $\operatorname{c-dim}_{\mathbb{Z}} X=3$ and $\operatorname{dim} X=\infty$ was constructed by using complex K-theory with finite coefficients.

R. D. Daverman proved (oral communication) that any Edwards-Walsh resolution Z of that compactum X cannot be embedded in \mathbb{R}^6 . The reason, roughly speaking, is that the 3-dimensional skeleton of high-dimensional simplex cannot be embedded in \mathbb{R}^6 and X contains such skeletons by the construction.

In this paper by using K-theory of Eilenberg-Mac Lane spaces $K(\pi, 2)$ for $\pi = \mathbb{Z}_p$ and $\mathbb{Z}[\frac{1}{p}]$, and infinite-dimensional compactum X with $\operatorname{c-dim}_{\mathbb{Z}}X \times X \leq 5$ is constructed. Then by improving Edwards' theorem, the Edwards-Walsh resolution $f: Z \to X$ with the additional property $\dim Z \times Z \leq 5$ is constructed. Then a recent result of [D-R-S, Sp] implies that such a compactum Z can be embedded in \mathbb{R}^6 . All together, this produces a cell-like map of the 6-dimensional cube with infinite-dimensional image.

2. AN INFINITE-DIMENSIONAL COMPACTUM WITH FINITE COHOMOLOGICAL DIMENSION

By $K(\pi, n)$ denote an Eilenberg-Mac Lane complex, i.e., an arbitrary CW-complex L with the properties $\pi_i(L) = 0$ if $i \neq n$ and $\pi_n(L) = \pi$. So a contractible CW-complex is regarded as an Eilenberg-Mac Lane complex $K(\{e\}, n)$ for arbitrary n where $\{e\}$ denoted the trivial group.

Recall that the cohomological dimension of a space X with group G as coefficients does not exceed n, $\operatorname{c-dim}_G X \leq n$, if for any closed subset $A \subset X$ and for an arbitrary continuous map $\phi \colon A \to K(G, n)$ there exists an extension $\psi \colon X \to K(G, n)$ of ϕ [Ku, W, D1].

Definition [D1]. Let $f: X \to K$ be a map, and let K be a polyhedron with fixed triangulation τ . The formal inequality $\operatorname{c-dim}_G(f, \tau) \le n$ will denote the following statement:

For any subpolyhedron $A \subset K$ with respect to τ for an arbitrary map $\phi: A \to K(G, n)$ there exists an extension $\psi: X \to K(G, n)$ of the restriction $\phi \circ f|_{f^{-1}(A)}$.

Recall that $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ and that $\mathbb{Z}[\frac{1}{p}] = \{m/p^k \in \mathbb{Q}\}$ is a localization of integers away from the prime p. The main result of this section is the following.

Theorem 1. For arbitrary prime p there exists an infinite-dimensional compactum X with cohomological dimensions $\operatorname{c-dim}_{\mathbb{Z}_p} X \leq 2$ and $\operatorname{c-dim}_{\mathbb{Z}[\frac{1}{p}]} X \leq 2$.

¹After this paper was submitted J. Dydak and J. Walsh solved negatively the cell-like mapping problem in dimension 5. Instead of calculation in K-theory they used the Sullivan conjecture proved by H. Miller.

Proposition 1. The inequality $\max\{\text{c-dim}_{\mathbb{Z}[\frac{1}{p}]}X, \text{c-dim}_{\mathbb{Z}_p}X\} \leq n$ implies that $\text{c-dim}_{\mathbb{Z}}X \leq n+1$.

Proof. By Cohen's theorem [Ku] the inequality c-dim_G $X \leq n$ for compact X is equivalent to the property: $H_c^{n+1}(U;G)=0$ for every open set $U\subset X$, where H_c^* is Čech cohomology with compact support. The short exact sequence $0\to\mathbb{Z}\to\mathbb{Z}[\frac{1}{p}]\to\mathbb{Z}_{p^\infty}\to 0$ generates a long one (here $\mathbb{Z}_{p^\infty}=\varinjlim \mathbb{Z}_{p^k}$)

$$\cdots \to H^{n+1}_c(U; \mathbb{Z}_{p^{\infty}}) \to H^{n+2}_c(U; \mathbb{Z}) \to H^{n+2}_c(U; \mathbb{Z}[\frac{1}{p}]) \to \cdots$$

for arbitrary open sets $U\subset X$. By virtue of Bokshtein's inequality [Ku] $\operatorname{c-dim}_{\mathbb{Z}_p\infty} X\leq \operatorname{c-dim}_{\mathbb{Z}_p} X$, we have that $H^{n+1}_c(U\,;\,\mathbb{Z}_{p^\infty})=0$. Since $\operatorname{c-dim}_{\mathbb{Z}[\frac{1}{p}]} X\leq n+1$ we have that $H^{n+2}_c(U\,;\,\mathbb{Z}[\frac{1}{p}])=0$. Hence $H^{n+1}_c(U\,;\,\mathbb{Z})=0$ and therefore $\operatorname{c-dim}_{\mathbb{Z}} X\leq n+1$.

The following lemma for $G = \mathbb{Z}$ actually was proved in [W].

Lemma 1. Let n > 1 and $G = \mathbb{Z}_p$ or $\mathbb{Z}[\frac{1}{p}]$ than for arbitrary compact polyhedron K with fixed triangulation τ there exists a countable CW-complex $W_{\tau}(G, n)$ and a map $\omega \colon W_{\tau}(G, n) \to K$ with the following properties:

- (1) for any simplex $\sigma \in \tau$, $\omega^{-1}(\sigma) \simeq K(\bigoplus_{1}^{m_{\sigma}} G, n)$,
- (2) $\operatorname{c-dim}_G(\omega, \tau) \leq n$,
- (3) $W_{\tau}(G, n)$ can be supplied with PL-structure compatible with the cellular one.

We call the complex $W_{\tau}(G, n)$ together with the map ω Edwards-Walsh construction for τ , G, n.

Proof. If dim $K \le n$ then define $W_{\tau}(G, n) = K$ and $\omega = \mathrm{id}_{K}$.

If $\dim K=n+1$ then for every (n+1)-dimensional simplex $\sigma\in\tau$ replace σ by an Eilenberg-Mac Lane complex K(G,n). In order to do this, fix an n-dimensional sphere S^n in K(G,n) which generates the unit $1\in\pi_n(K(G,n))=G$ $(=\mathbb{Z}_p$ or $\mathbb{Z}[\frac{1}{p}])$ and identify that sphere with the boundary $\partial\sigma$ by some PL-homeomorphism. As a result, we will obtain a CW-complex $W_\tau(G,n)$. Define ω such that $\omega^{-1}|_{K^{(n)}}\colon K^{(n)}\to W_\tau(G,n)$ is an embedding. To achieve this property, send every attached Eilenberg-Mac Lane complex to the corresponding simplex σ and then move $K(G,n)-S^n$ off $\partial\sigma$ into $\dot{\sigma}$.

If $\dim K = n+2$ consider the Edwards-Walsh construction $\omega^1 \colon W_{\tau_k^1}(G,n) \to K^{(n+1)}$ for the (n+1)-dimensional skeleton $K^{(n+1)}$ of K with restricted triangulation $\tau^1 = \tau|_{K^{(n+1)}}$. Consider an arbitrary (n+2)-simplex $\sigma \in \tau$. Denote by Y_σ the preimage $(\omega^1)^{-1}(\sigma^{(n+1)})$. In the case $G = \mathbb{Z}_p$ it is easy to see that $\pi_n(Y_\sigma) = \bigoplus \mathbb{Z}_p$. Then by attaching cells to Y_σ in the dimensions > n+1 it is possible to obtain a complex $K(\bigoplus \mathbb{Z}_p, n)$ which automatically will be glued to Y_σ . Do this for all (n+2)-dimensional simplexes to obtain $W_\tau(\mathbb{Z}_p, n)$ and define a map $\omega \colon W_\tau(\mathbb{Z}_p, n) \to K$ with the properties:

- (1) $\omega|_{W_{\tau^1}(\mathbb{Z}_p,n)}=\omega^1$ and
- (2) $\omega^{-1}|_{K^{(n+1)}} \equiv (\omega^1)^{-1}$.

In the case $G = \mathbb{Z}[\frac{1}{p}]$ we have $\pi_n(Y_\sigma)/\operatorname{Tor} \pi_n(Y_\sigma) = \bigoplus \mathbb{Z}[\frac{1}{p}]$. By attaching to Y_σ n+1-cells killing $\operatorname{Tor} \pi_n(Y_\sigma)$ and then cells in higher dimensions, it is possible to obtain a complex $K(\bigoplus \mathbb{Z}[\frac{1}{p}], n)$ glued to Y_σ . Similarly define the map $\omega \colon W_\tau(\mathbb{Z}[\frac{1}{p}], n) \to K$.

If the dimension of K is greater than n+2, the Edwards-Walsh construction can be produced by induction and for every m-dimensional simplex σ for m>n+2 we will have $\pi_n((\omega^1)^{-1}(\sigma^{(m-1)}))=\bigoplus G$. It is trivial for $G=\mathbb{Z}_p$ and can be easily computed for $G=\mathbb{Z}[\frac{1}{p}]$. Then build $K(\bigoplus G,n)$ by attaching to $(\omega^1)^{-1}(\sigma^{(m-1)})$ cells of dimension >n+1. Define $W_\tau(G,n)$ and ω as above.

The properties (1), (3) hold by the construction. In order to check (2) it is sufficient to prove that for every simplex $\sigma \in \tau$ the inclusion $j \colon \omega^{-1}(\partial \sigma) \to \omega^{-1}(\sigma)$ induces an epimorphism $j^* \colon H^n(\omega^{-1}(\sigma); G) \to H^n(\omega^{-1}(\partial \sigma); G)$. If $\dim \sigma > n+2$ this follows from the fact that $\omega^{-1}(\sigma)$ is obtained from $\omega^{-1}(\partial \sigma)$ by attaching cells only in the dimension > n+1. The same argument is valid for $\dim \sigma = n+2$ and $G = \mathbb{Z}_p$.

If $\dim \sigma = n+2$ and $G = \mathbb{Z}[\frac{1}{p}]$ the homomorphism j^* is an epimorphism because all (n+1)-cells attached to $\omega^{-1}(\partial \sigma)$ in the construction of $\omega^{-1}(\sigma)$ are attached by maps which generate elements of finite order in $\pi_n(\omega^{-1}(\partial \sigma))$ and $\text{Tor } \mathbb{Z}[\frac{1}{p}] = 0$. Since the inclusion of the "unit" sphere $S^n \hookrightarrow K(G, n)$ induces an epimorphism of n-dimensional cohomology groups with G as coefficients, then j^* is an epimorphism in the case $\dim \sigma = n+1$. If $\dim \sigma \leq n$ then there is no problem.

Let $\widetilde{K}^*_{\mathbb{C}}(X; \mathbb{Z}_p)$ denote the reduced complex K-theory with coefficients \mathbb{Z}_p [B-M, A-H]. Recall that for connected X, $\widetilde{K}^{2i}_{\mathbb{C}}(X; \mathbb{Z}_p) = [X \wedge B_p^2, BU]$ and $\widetilde{K}^{2i+1}_{\mathbb{C}}(X; \mathbb{Z}_p) = [X \wedge B_p^2, U]$ where $B_p^2 = S^1 \cup_p B^2$ is a Moore space.

Theorem 2 [A-H]. $\widetilde{K}^*_{\mathbb{C}}(K(\mathbb{Z}_p, 2); \mathbb{Z}_p) = 0$.

Corollary. $\widetilde{K}^*_{\mathbb{C}}(K(\bigoplus \mathbb{Z}_p , 2); \mathbb{Z}_p) = 0$.

Proposition 2. $\widetilde{K}_{\mathbb{C}}^*(K(\mathbb{Z}[\frac{1}{n}], 2); \mathbb{Z}_p) = 0$.

Proof. Since $\widetilde{K}_{\mathbb{C}}^*(K(\mathbb{Z}[\frac{1}{p}], 2))$ has a structure of $\mathbb{Z}[\frac{1}{p}]$ -module the universal coefficient formula [A-H] implies the formula.

Corollary. $\widetilde{K}_{\mathbb{C}}^*(K(\bigoplus \mathbb{Z}[\frac{1}{n}], 2); \mathbb{Z}_p) = 0$.

Proposition 3. Let $\omega \colon W_{\tau}(G, 2) \to K$ be a projection in Edwards-Walsh construction for $G = \mathbb{Z}_p$ or $\mathbb{Z}[\frac{1}{p}]$. Then ω induces an isomorphism $\omega^* \colon \widetilde{K}_{\mathbb{C}}^*(K; \mathbb{Z}_p) \to \widetilde{K}_{\mathbb{C}}^*(W_{\tau}(G, 2); \mathbb{Z}_p)$.

Proof. By induction on dim K. Apply the Mayer-Vietoris sequence and the Corollary of Theorem 2 in the case $G = \mathbb{Z}_p$ and the Corollary of Proposition 2 in the case $G = \mathbb{Z}[\frac{1}{p}]$.

Proposition 4 [B-M]. Suppose that the CW-complex X is a direct limit $X = \lim_{\alpha \to \infty} X_{\alpha}$, then $\widetilde{K}_{\mathbb{C}}^{*}(X; \mathbb{Z}_{p}) = \lim_{\alpha \to \infty} \widetilde{K}_{\mathbb{C}}^{*}(X_{\alpha}; \mathbb{Z}_{p})$.

Proposition 5. Let K be a polyhedron with triangulation τ and suppose the map $f: X \to K$ has the property $\operatorname{c-dim}_G(f, \tau) \leq n$. If $f' = f \circ g$ then $\operatorname{c-dim}_G(f', \tau) \leq n$.

Corollary. If $X' \subset X$ then $\operatorname{c-dim}_G(f_{|X'}, \tau) \leq n$.

The proof is trivial.

Lemma 2. For any prime p and for $G = \mathbb{Z}[\frac{1}{p}]$ or \mathbb{Z}_p , for an arbitrary compact polyhedron K with triangulation τ , and for arbitrary nontrivial $\alpha \in \widetilde{K}_{\mathbb{C}}^*(K; \mathbb{Z}_p)$ there exists a map $f: L \to K$ of a compact polyhedron L with the properties

- (1) $f^*(\alpha) \neq 0$,
- (2) $\operatorname{c-dim}_G(f, \tau) \leq 2$.

Proof. Consider the Edwards-Walsh construction $\omega\colon W_\tau(G,2)\to K$. By property (3) of Lemma 1 there is a filtration of $W_\tau(G,2)$ by compact polyhedra $L_1\subset L_2\subset\cdots\subset L_i\subset\cdots$. Denote by ε_i the inclusion $L_i\hookrightarrow W_\tau(G,2)$. By Proposition 3 $\omega^*(\alpha)\neq 0$. By Proposition 4 there exists i such that $\varepsilon_i^*(\omega^*(\alpha))\neq 0$. Consider $L=L_i$ and $f=\omega|_{L_i}$. We have $f^*(\alpha)=\varepsilon_i^*(\omega^*(\alpha))\neq 0$. By property (2) of Lemma 1 and the Corollary of Proposition 5 we have $\operatorname{c-dim}_G(f,\tau)\leq 2$.

Lemma 3 [D1]. Let Z be the limit space of an inverse system of compact polyhedra $\{L_i, g_i^{i+1}\}$ with fixed triangulations τ_i and fixed metrics ρ_i . Suppose that for all k,

$$\lim_{k \to \infty} \operatorname{mesh}(g_k^{k+i}(\tau_{k+i})) = 0$$

and suppose that for infinitely many i, $\operatorname{c-dim}_{\pi}(g_i^{i+1}, \tau_i) \leq n$. Then $\operatorname{c-dim}_{\pi}Z \leq n$.

Proof of Theorem 1. We define X as a limit space of an inverse system $\{L_i,g_i^{i+1}\}$ and construct this system by induction. Define $L_1=S^4$ and fix a metric ρ_1 on L_1 and triangulation τ_1 with mesh $\tau_1<1$. Fix $\alpha_1\in \widetilde{K}_{\mathbb{C}}^*(S^4;\mathbb{Z}_p)$, $\alpha_1\neq 0$, and apply Lemma 2 with $G=\mathbb{Z}[\frac{1}{p}]$ to obtain $g_1^2\colon L_2\to L_1$. Define $\alpha_2=(g_1^2)^*(\alpha_1)\neq 0$. Fix a metric ρ_2 on L_2 and choose a triangulation τ_2 with mesh $\tau_2<\frac{1}{2}$ and mesh $g_1^2\tau_2<\frac{1}{2}$. Then apply Lemma 2 with $G=\mathbb{Z}_p$ and so on.

Additionally we will obtain a sequence $\alpha_i \in \widetilde{K}^*_{\mathbb{C}}(L_i, \mathbb{Z}_p)$ such that $(g_1^i)^*(\alpha_1) = \alpha_i \neq 0$.

Lemma 3 implies that $\operatorname{c-dim}_{\mathbb{Z}_p} X$, $\operatorname{c-dim}_{\mathbb{Z}[\frac{1}{p}]} X \leq 2$. The compact X is infinite dimensional. Then by Alexandroff's theorem [A, W] it follows that $\dim X = \operatorname{c-dim}_{\mathbb{Z}} X$. By virtue of Proposition 1, $\dim X \leq 3$. Hence the projection $(g_1^\infty) \colon X \to S^4$ is not essential. From the other side we have that $(g_1^\infty)^*(\alpha) \neq 0$. Therefore g_1^∞ is an essential map. Contradiction.

3. EDWARDS-WALSH RESOLUTION

Suppose that $\{(X_i, x_i), p_i^{i+1}\}$ is an inverse system of pointed spaces and base point preserving maps. Then there are natural embeddings of $\prod_{i=1}^m X_i$ into $\prod_{i=1}^\infty X_i$. The sequence $X_1 \leftarrow X_2 \leftarrow \cdots \leftarrow X_m$ defines an embedding of X_m into $\prod_{i=0}^m X_i$ and the inverse system $\{X_i, p_i^{i+1}\}$ defines an embedding of the limit space in $\prod_{i=1}^\infty X_i$ by the definition. So, for any pointed inverse system $\{X_i, p_i^{i+1}\}$ with limit space X there are natural embeddings $X_i \hookrightarrow \prod_{i=1}^\infty X_i$ and $X \hookrightarrow \prod_{i=1}^\infty X_i$. We will call this system of embeddings a realization of the inverse system in $\prod_{i=1}^\infty X_i$.

Suppose that ρ_i is a metric on X_i , and let $\overline{\rho}_i$ be the diameter of X_i . If $\sum_{i=1}^{\infty} \overline{\rho}_i < \infty$ then the formula $\rho(x,y) = \sum_{i=1}^{\infty} \rho_i(p_i^{\infty}(x),p_i^{\infty}(y))$ defines a metric on $\prod_{i=1}^{\infty} X_i$. Such a metric we will call a brick metric.

Let \mathscr{M} be a finite covering of some space X with fixed metric. By $d(\mathscr{M})$ we denote $\max\{\operatorname{diam} M: M \in \mathscr{M}\}$ and by $\lambda(\mathscr{M})$ we denote the Lebesgue number of \mathscr{M} :

$$\lambda(\mathcal{M}) = \max\{r : \forall O_r(x) \exists M \in \mathcal{M} \text{ s.t. } O_r(x) \subset M\}.$$

Here $O_r(x)$ is the ball of radius r with x as a center. By M_x denote arbitrary sets $M \in \mathcal{M}$ with the property $x \in O_{\lambda(\mathcal{M})}(x) \subset M$.

The following lemma is a variation of M. Brown's lemma [Br, W].

Lemma 4. Let $X = \varprojlim \{K_i, f_i^{i+1}\}$ be the limit space of an inverse system of compacta and suppose that the system $\{K_i, f_i^{i+1}\}$ is realized in $\prod_{i=1}^{\infty} K_i$ with brick metric ρ on it. Suppose $Z = \varprojlim \{L_i, g_i^{i+1}\}$ is the limit space of another inverse system of compacta and suppose that for all i a covering \mathcal{M}^i of K_i and a map $\alpha_i : L_i \to K_i$ are defined such that

- (1) $\alpha_i(L_i) \cap M \neq \emptyset$ for every $M \in \mathcal{M}^i$,
- (2) the square diagram

$$L_{i+1} \xrightarrow{\alpha_{i+1}} K_{i+1}$$

$$\downarrow g_i^{i+1} \qquad \downarrow f_i^{i+1}$$

$$L_i \xrightarrow{\alpha_i} K_i$$

is $(\lambda_i/4)$ -commutative, i.e., $\rho(\alpha_i \circ g_i^{i+1}, f_i^{i+1} \circ \alpha_{i+1}) < \lambda_i/4$ where $\lambda_i = \lambda(\mathcal{M}^i)$, (3) $d_i = d(\mathcal{M}^i) < \lambda_{i-1}/4$.

Then there exists a map $\alpha: Z \to X$ onto X such that a preimage of each point $x \in X$ is

$$\alpha^{-1}(x) = \underline{\lim} \left\{ \alpha_i^{-1}(M_{f_i^{\infty}(x)}), g_i^{i+1} \right\}.$$

Proof. (A) For any i, k, $\rho(\alpha_i \circ g_i^{i+k}, f_i^{i+k} \circ \alpha_{i+k}) < \lambda_i/2$. Prove it by induction on k. For k=1 it follows by property (2). Suppose that k>1. For an arbitrary point $z \in L_{i+k}$ the triangle inequality implies

$$\begin{split} \rho(\alpha_{i} \circ g_{i}^{i+k}(z), & f_{i}^{i+k} \circ \alpha_{i+k}(z)) \\ & \leq \rho(\alpha_{i} g_{i}^{i+1}(g_{i+1}^{i+k}(z)), & f_{i}^{i+1} \alpha_{i+1}(g_{i+1}^{i+k}(z))) \\ & + \rho(f_{i}^{i+1}(\alpha_{i+1} g_{i+1}^{i+k}(z)), & f_{i}^{i+1}(f_{i+1}^{i+k} \alpha_{i+k}(z))) \\ & \leq \lambda_{i}/4 + \rho(\alpha_{i+1} g_{i+1}^{i+k}(z), & f_{i+1}^{i+k} \alpha_{i+k}(z)). \end{split}$$

The last inequality is due to (2) and a property of brick metric. Apply the induction assumption to conclude the proof.

(B) There exists a limit α of the sequence of maps $\alpha_i g_i^{\infty} \colon Z \to \prod_{i=1}^{\infty} K_i$. Denote by s_k the sum $\sum_{i=k}^{\infty} \overline{\rho}_i$ where $\overline{\rho}_i = \operatorname{diam}_{\rho_i} K_i$. Then for any $z \in Z$,

$$\rho(\alpha_{i}g_{i}^{\infty}(z), \alpha_{i+k}g_{i+k}^{\infty}(z))
\leq \rho(\alpha_{i}g_{i}^{i+k}(g_{i+k}^{\infty}(z)), f_{i}^{i+k}\alpha_{i+k}(g_{i+k}^{\infty}(z)))
+ \rho(f_{i}^{i+k}\alpha_{i+k}(g_{i+k}^{\infty}(z)), \alpha_{i+k}g_{i+k}^{\infty}(z)) < \lambda_{i}/2 + s_{i}.$$

The Cauchy criterion implies the proof.

(C) $\alpha(Z) \subset X$. For arbitrary $z \in Z$, $\rho(\alpha_i g_i^{\infty}(z), (f_i^{\infty})^{-1} \alpha_i g_i^{\infty}(z)) < s_i$ and hence $\lim_{i \to \infty} \rho(\alpha_i g_i^{\infty}(z), X) = 0$.

(D) The sequence $\{\alpha_i^{-1}(M_{f_i^{\infty}(x)}), g_i^{i+1}|...\}$ is well defined for any x and for arbitrary choice of $M_{f_i^{\infty}(x)} \in \mathcal{M}^i$.

Property (1) implies that $\alpha_i^{-1} M_{f_i^{\infty}(x)} \neq 0$ for all i. It suffices to show that

$$g_i^{i+1}(\alpha_{i+1}^{-1}(M_{f_{i+1}^{\infty}(x)})) \subset \alpha_i^{-1}(M_{f_i^{\infty}(x)}).$$

Let $y \in \alpha_{i+1}^{-1} M_{f_{i+1}^{\infty}(x)}$. We show that $\alpha_i g_i^{i+1}(y) \in M_{f_i^{\infty}(x)}$. By the triangle inequality we have

$$\rho(\alpha_{i}g_{i}^{i+1}(y), f_{i}^{\infty}(x))
\leq \rho(\alpha_{i}g_{i}^{i+1}(y), f_{i}^{i+1}\alpha_{i+1}(y)) + \rho(f_{i}^{i+1}\alpha_{i+1}(y), f_{i}^{i+1}f_{i+1}^{\infty}(x))
\leq \lambda_{i}/4 + d_{i+1} < \lambda_{i}/4 + \lambda_{i}/4 \quad \text{(by (3))}
\leq \lambda_{i}/2.$$

Hence $\alpha_i g_i^{i+1}(y) \in O_{\lambda_i}(f_i^{\infty}(x)) \subset M_{f^{\infty}(x)}$.

(E)
$$\alpha(\underline{\lim} \{\alpha_i^{-1}(M_{f_i^{\infty}(x)})\}) = x$$
. Let $z \in \underline{\lim} \{\alpha_i^{-1}(M_{f_i^{\infty}(x)})\}$. Since

$$\rho(\alpha_i g_i^{\infty}(z), f_i^{\infty}(x)) < d_i$$

then $\rho(\alpha_i g_i^{\infty}(z), x) < d_i + s_i \to 0$.

(F)
$$\alpha^{-1}(x) \subset \underline{\lim} \left\{ \alpha_i^{-1}(M_{f_i^{\infty}(x)}) \right\}.$$

Suppose that $z \notin \varprojlim \{\alpha_i^{-1}(M_{f_i^{\infty}(x)})\}$. Then there is a number i such that $g_i^{\infty}(z) \notin \alpha_i^{-1}M_{f_i^{\infty}(x)}$. Hence

(*)
$$\rho(\alpha_i g_i^{\infty}(z), f_i^{\infty}(x)) > \lambda_i.$$

Brick metric properties and triangle inequality imply that

$$\rho(\alpha_{i+k}g_{i+k}^{\infty}(z), x) \ge \rho(f_i^{i+k}\alpha_{i+k}g_{i+k}^{\infty}(z), f_i^{\infty}(x))
\ge \rho(\alpha_i g_i^{\infty}(z), f_i^{\infty}(x)) - \rho(f_i^{i+k}\alpha_{i+k}(g_{i+k}^{\infty}(z)), \alpha_i g_i^{i+k}(g_{i+k}^{\infty}(z)))
\ge \lambda_i - \lambda_i/2$$

(by (*) and (A)). So $\rho(\alpha(z), x) \ge \lambda_i/2$.

Suppose that K is an n-dimensional polyhedron with fixed triangulation τ and ρ is a prime number. We define n-dimensional complexes $\rho\tau$ and $\frac{1}{p}\tau$ together with projections $\mu\colon \rho\tau\to K$ and $\nu=\frac{1}{p}\tau\to K$ and call them a p-modification of K and $\frac{1}{p}$ -modification of K correspondingly. The complex $p\tau$ is obtained from K by replacement of n-dimensional simplexes by n-cells attached by maps of degree p. The projection μ is defined arbitrary with the property that $\mu^{-1}|K^{(n-1)}$ is an embedding. The complex $\frac{1}{p}\tau$ is obtained from K by replacement of n-simplices by infinite p-telescopes = the infinite union of mapping cylinders of maps of degree p (see [Su]), and define a map $\nu:\frac{1}{p}\tau\to K$ with the same property.

Proposition 6. For arbitrary triangulation τ of an (n+1)-skeleton of m-simplex, $m > n \ge 2$, $\pi_n(\rho \tau) = \bigoplus \mathbb{Z}_p$ and $\pi_n(\frac{1}{n}\tau)$ is divisible by p.

Proof. Since $|\tau^{(n)}|$ is (n-1)-connected, $\pi_n(\tau^{(n)})$ is a free module over \mathbb{Z} . It is generated by the family of boundaries of (n+1)-simplices in τ , say a_1, \ldots, a_m . The relations are obtained from (n+2)-simplices of τ . Let it

be F_1, \ldots, F_l . So we know that the module $\mathbb{Z}[a_1, \ldots, a_m]/\{F_i\}$ is free over \mathbb{Z} . By the construction of the *p*-modification we have

$$\pi_n(p\tau) = \mathbb{Z}_p[a_1, \ldots, a_m]/\{F_i\}.$$

It is easy to check that every basis e_1, \ldots, e_k in $\mathbb{Z}[a_1, \ldots, a_m]/\{F_i\}$ generates a basis $\overline{e}_1, \ldots, \overline{e}_k$ in $\mathbb{Z}_p[a_1, \ldots, a_m]/\{F_i\}$.

Since $\pi_n(\frac{1}{p}\tau) = \mathbb{Z}[\frac{1}{p}][a_1, \ldots, a_m]/\{F_i\}$ then $\pi_n(\frac{1}{p}\tau)$ is divisible by p.

Proposition 7. If G is divisible by p then

$$\operatorname{c-dim}_G Y \leq \max\{\operatorname{c-dim}_{\mathbb{Z}[\frac{1}{p}]} Y, \operatorname{c-dim}_{\mathbb{Z}_{p^{\infty}}} Y\}.$$

Proof. The short exact sequence $0 \to \operatorname{Tor} G \to G/\operatorname{Tor} G \to 0$ implies that $\operatorname{c-dim}_G Y \leq \max\{\operatorname{c-dim}_{\operatorname{Tor} G} Y, \operatorname{c-dim}_{G/\operatorname{Tor} G} Y\}$. The torsion part can be split as $\operatorname{Tor} G = \operatorname{Tor}' G \oplus p$ - $\operatorname{Tor} G$ and $\operatorname{Tor}' G$ does not contain p-torsion. Bokshtein's inequalities [Ku] $\operatorname{c-dim}_{\mathbb{Z}_{q^\infty}} \leq \operatorname{c-dim}_{\mathbb{Z}_q} \leq \operatorname{c-dim}_{\mathbb{Z}_{(q)}}$, where $\mathbb{Z}_{(q)}$ is a localization of the integers at some prime q, imply that $\operatorname{c-dim}_{\operatorname{Tor}' G} \leq \operatorname{c-dim}_{\mathbb{Z}_{[\frac{1}{p}]}}$. Since G is divisible by p then p- $\operatorname{Tor} G = \bigoplus \mathbb{Z}_{p^\infty}$ and hence $\operatorname{c-dim}_{p$ - $\operatorname{Tor} G} \leq \operatorname{c-dim}_{\mathbb{Z}_{p^\infty}}$. Since $G/\operatorname{Tor} G$ is divisible by p it follows [Ku] that $\operatorname{c-dim}_{G/\operatorname{Tor} G} \leq \operatorname{c-dim}_{\mathbb{Z}_{[\frac{1}{p}]}}$.

Proposition 8. Let $\mu: p\tau \to |\tau|$ and $\nu: \frac{1}{p}\tau \to |\tau|$ be projections of the p-modification and $\frac{1}{p}$ -modification correspondingly of an (n+1)-dimensional polyhedron. Then $\operatorname{c-dim}_{\mathbb{Z}_p}(\mu, \tau) \leq n$ and $\operatorname{c-dim}_{\mathbb{Z}[\frac{1}{p}]}(\nu, \tau) \leq n$.

The proof follows from the definition.

Lemma 5. Suppose $w: R \to K$ is a map onto a polyhedron K. Let τ be a triangulation on K with mesh $\tau < \varepsilon$ and assume that for every simplex $\sigma \in \tau$, $w^{-1}(\sigma) \simeq K(\bigoplus_{1}^{m_{\sigma}} \pi, n)$ for some fixed n. If $\operatorname{c-dim}_{\pi} X \leq n$ then for any map $f: X \to K$ there exists an ε -lifting $f': X \to R$ (i.e., $\rho(wf', f) < \varepsilon$).

Proof. Construct f' step by step defined on sets $f^{-1}(K^{(i)})$ where $K^{(i)}$ denotes the *i*-skeleton with respect to τ . Define f' on $f^{-1}(K^{(0)})$ by choosing some points in $w^{-1}(v)$ for all $v \in K^{(0)}$. Suppose that f' is defined on $f^{-1}(K^{(i)})$ with the property:

(*)
$$\forall \sigma \in \tau \ \forall x \in X \ \text{if} \ f(x) \in \sigma \ \text{then} \ wf'(x) \in \sigma.$$

Consider an arbitrary (i+1)-dimensional simplex $\sigma \in \tau$ and extend the map

$$f'_{\mid \dots} \colon f^{-1}(\sigma^{(i)}) \to w^{-1}(\sigma) \simeq K \left(\bigoplus_{1}^{m_{\sigma}} \pi, n \right)$$

to a map of $f^{-1}(\sigma)$. Do this for all (i+1)-dimensional simplexes σ to define f' on $f^{-1}(K^{(i+1)})$. Property (*) holds and implies the inequality $\rho(wf',f)<\varepsilon$

By $|\tau|$ denote a geometric realization of a simplicial complex τ .

Lemma 6. Let X be the limit space of an inverse system of compact polyhedra $\{N_k, q_k^{k+1}\}$ and suppose that $\operatorname{c-dim}_{\mathbb{Z}_p} X \leq n$ and $\operatorname{c-dim}_{\mathbb{Z}[\frac{1}{p}]} X \leq n$ $(n \geq 2)$. Let the group G be equal to \mathbb{Z}_p or $\mathbb{Z}[\frac{1}{p}]$, and let $N_1^{(n+1)}$ denote (n+1)-dimensional skeleton of N_1 with respect to some triangulation τ_1 with $\operatorname{mesh} \tau_1 < \varepsilon$. Then

for any triangulation γ of $N_1^{(n+1)}$ there exists a number k such that for any triangulation τ of N_k there is a map $g: |\tau^{(n+1)}| \to N_1^{(n+1)}$ with the properties:

- (1) $\operatorname{c-dim}_G(g, \tau) \leq n$,
- (2) $\rho(g, q_1^k|_{|\tau^{(n+1)}|}) < 3\varepsilon$.

Proof. $G = \mathbb{Z}_p$. There exists a CW-complex R and a map $\theta: R \to N_1$ with the properties:

- (1) for any simplex $\sigma \in \tau_1$, $\theta^{-1}(\sigma) \simeq K(\pi_n(p(\gamma_{|\sigma^{(n+1)}})), n)$,
- (2) the (n+1)-dimensional skeleton $R^{[n+1]}$ coincides with the p-modification $p\gamma$, and the restriction $\theta_{|p\gamma}$ coincides with $\mu\colon p\gamma\to |\gamma|$. We define R as a growing union of CW-complexes $R_{n+1}\subset R_{n+2}\subset\cdots\subset R_{\dim N_1}=R$ and define θ as a union of maps $\theta_i\colon R_i\to N_i^{(i)}$, $i\geq n+1$. First of all define R_{n+1} as an Edwards-Walsh construction $W_\gamma(\mathbb{Z}_p\,,\,n)$ and $\theta_{n+1}=\omega\colon R_{n+1}\to N_1^{(n+1)}$ such that $R_{n+1}^{[n+1]}=p\gamma$ and $\omega_{|p\gamma}=\mu\colon p\gamma\to N_1^{(n+1)}$. For every (n+2)-dimensional simplex $\sigma\in\tau_1$,

$$\pi_n(\theta_{n+1}^{-1}(\sigma^{(n+1)})) = \pi_n(\mu^{-1}(\sigma^{(n+1)})) = \pi_n(p(\gamma_{|\sigma^{(n+1)}})).$$

By virtue of Proposition 6 it is possible to obtain a CW-complex $K(\bigoplus_{1}^{m_{\sigma}} \mathbb{Z}_{p}, n)$ by attaching to $\theta_{n+1}^{-1}(\sigma^{(n+1)})$ cells of dimensions $\geq n+2$. Define a map θ_{n+2} on each newly attached cell such that θ_{n+2} sends an open cell into the interior of σ and

$$\theta_{n+2}|_{\theta_{n+1}^{-1}(\sigma^{(n+1)})} = \theta_{n+1}|_{\theta_{n+1}^{-1}(\sigma^{(n+1)})}.$$

Thus it is possible to define $\theta_{n+2} \colon R_{n+2} \to N_1^{(n+2)}$. By using Proposition 6 we may assume that for arbitrary (n+3)-dimensional simplex $\sigma \in \tau_1$, the *n*th homotopy group $\pi_n(\theta_{n+2}^{-1}(\sigma^{(n+2)}))$ coincides with the *n*th homotopy group of the (n+1)-skeleton $\equiv \pi_n(p(\gamma_{|\sigma^{(n+1)}}))$, and so on.

If $G = \mathbb{Z}[\frac{1}{p}]$ then there exists a CW-complex R and a map $\theta: R \to N_1$ such that

- (1) for any simplex $\sigma \in \tau_1$, $\theta^{-1}(\sigma) \simeq K(\pi_n(\frac{1}{p}(\gamma_{|\sigma^{(n+1)}})), n)$,
- (2) the (n+1)-dimensional skeleton $R^{[n+1]}$ coincides with the $\frac{1}{p}$ -modification $\frac{1}{p}\gamma$ and the restriction $\theta|_{\frac{1}{p}\gamma}$ coincides with $\nu:\frac{1}{p}\gamma\to|\gamma|$.

The proof is the same.

By Proposition 6, $\pi_n(p(\gamma_{|\sigma^{(n+1)}})) = \bigoplus \mathbb{Z}_p$, and the group $\pi = \pi_n(\frac{1}{p}(\gamma_{|\sigma^{(n+1)}}))$ is divisible by p. Proposition 7 implies that $\operatorname{c-dim}_\pi X \leq n$. So, in both cases it is possible to apply Lemma 5 to the map $\theta \colon R \to N_1$. In both cases we will obtain an ε -lifting $f \colon X \to R$. Since $R \in \operatorname{ANE}$ then there exists a number k and a map $f_k \colon N_k \to R$ such that $\rho(\theta \circ f, \theta \circ f_k \circ q_k^\infty) < \varepsilon$. Let τ be a triangulation of N_k . Denote by g' a cellular approximation of $f_k \colon |\tau^{(n+1)}| \to R$ into the (n+1)-skeleton $R^{[n+1]}$. We have $\rho(\theta \circ f_k, \theta \circ g) < \varepsilon$. For arbitrary $z \in |\tau^{(n+1)}|$ choose $x \in (q_\infty^k)^{-1}(z)$. Then

$$\begin{split} \rho(q_1^k(z)\,,\,\theta\circ g'(z)) &\leq \rho(q_1^\infty(x)\,,\,\theta\circ f(x)) + \rho(\theta\circ f(x)\,,\,\theta\circ f_k\circ q_k^\infty(x)) \\ &\quad + \rho(\theta\circ f_k(z)\,,\,\theta\circ g'(z)) \leq 3\varepsilon\,. \end{split}$$

Denote by $g = \theta \circ g' \colon |\tau^{(n+1)}| \to N_1^{(n+1)}$. Property (2) has just been checked. By Proposition 8, c-dim $_G(\theta_{|R^{[n+1]}}, \gamma) \le n$ and hence by virtue of Proposition 5, c-dim $_G(g, \tau) \le n$.

Lemma 7 [W]. Let X be the limit space of an inverse system of compact polyhedra $\{N_k, q_i^{i+1}\}$ and suppose that $\operatorname{c-dim}_{\mathbb{Z}} X \leq m$. Let $N_1^{(m)}$ be an (n+1)-skeleton of N_1 with respect to some triangulation τ_1 with $\operatorname{mesh} \tau_1 < \varepsilon$. Then there exists a number k such that for any triangulation τ of N_k there is a map $g: |\tau^{(m+1)}| \to N_1^{(m)}$ with $\rho(g, f_1^k) < 3\varepsilon$.

Proof. Let $\omega \colon W_{\tau_1}(\mathbb{Z}, m) \to N_1$ be the Edwards-Walsh construction. By Lemma 5 there is an ε -lifting $f \colon X \to W_{\tau_1}(\mathbb{Z}, m)$ of q_1^{∞} . Apply the above argument to define $g' \colon |\tau^{(m+1)}| \to W_{\tau_1}(\mathbb{Z}, m)^{[m+1]}$. Since $W_{\tau_1}(\mathbb{Z}, m)^{[m+1]} = W_{\tau_1}(\mathbb{Z}, m)^{[m]}$ the map $g = \omega \circ g'$ sends $|\tau^{(m+1)}|$ into $N_1^{(m)}$ and property $\rho(g, f_1^k) < 3\varepsilon$ holds.

The following is a generalization of Edwards' theorem [E2, W].

Theorem 3. Suppose that the compactum X has cohomological dimensions $\operatorname{c-dim}_{\mathbb{Z}_p} X$ and $\operatorname{c-dim}_{\mathbb{Z}[\frac{1}{p}]} X \leq n$, $n \geq 2$, for some p. Then there exist an (n+1)-dimensional compactum Z with $\operatorname{c-dim}_{\mathbb{Z}_p} Z \leq n$, $\operatorname{c-dim}_{\mathbb{Z}[\frac{1}{p}]} Z \leq n$ and a cell-like map $\alpha \colon Z \to X$.

Proof. We may assume that X is the limit space of an inverse system of compact polyhedra $\{N_k, q_k^{k+1}\}$. Proposition 1 implies that $\operatorname{c-dim}_{\mathbb{Z}} X \leq n+1$.

We construct two inverse systems $\{K_i, f_i^{i+1}\}$, $\{L_i, g_i^{i+1}\}$, and a system of maps $\{\alpha_i \colon L_i \to K_i\}$ such that $X = \varprojlim \{K_i, f_i^{i+1}\}$, and properties (1)-(3) of Lemma 4 hold. We construct it by induction so that the step of induction from i to i+1 depends on the class of $i \mod 3$. To demonstrate it consider in detail the cases i=1,2 and 3.

Define $K_i=N_1$. Consider a finite covering \mathcal{M}^1 of K_1 by contractible subpolyhedra with respect to some fixed triangulation of K_1 and with nontrivial Lebesgue number $\lambda_1=\lambda(\mathcal{M}^1)$. Let us regard that for each N_k some metric ρ_k is fixed and $\sum_{k=1}^\infty \rho_k < \infty$. Let τ_1 be a triangulation of K_1 with mesh $\tau_1 < \lambda_1/12$. Define $L_1=|\tau_1^{(n+1)}|$ and let $\alpha_1\colon L_1\hookrightarrow K_1$ be the natural embedding. Apply Lemma 6 for $G=\mathbb{Z}_p$ and for $\gamma_1=\tau_1^{(n+1)}$ to obtain k. Then define $K_2=N_k$ and consider a finite covering \mathcal{M}^2 of K_2 by contractible subpolyhedra with nontrivial Lebesgue number $\lambda_2=\lambda(\mathcal{M}^2)$ with respect to a metric $\rho_1+\rho_k$ on K_2 given by

$$(\rho_1 + \rho_k)(x_1, x_2) = \rho_1(q_1^k(x_1), q_1^k(x_2)) + \rho_k(x_1, x_2).$$

We can regard that $d_2=\dim \mathcal{M}^2<\lambda_1/4$. Choose a triangulation τ_2 of K_2 with mesh $\tau_2<\lambda_2/12$ (with respect to that metric $\rho_1+\rho_k$). Define $L_2=|\tau_2^{(n+1)}|$. By Lemma 6 there exists a map $g_1^2\colon L_2\to L_1$ with c-dim $_{\mathbb{Z}_p}(g_1^2,\,\tau_1)\le n$ and $\rho(g_1^2,\,q_1^k|_{|\tau_2^{(n+1)}|})<3\lambda_1/12=\lambda_1/4$. Denote $f_1^2=q_1^k$, and define $\alpha_2\colon L_2\hookrightarrow K_2$ be the natural embedding. So, properties (1)–(3) of Lemma 4 for $i\le 2$ hold. Choose a triangulation γ_2 of L_2 with max{mesh γ_2 , mesh $g_1^2\gamma_2$ } < λ_2 and apply Lemma 6 for $G=\mathbb{Z}[\frac{1}{p}]$ and the system $\{N_l,\,q_l^{l+1}\}_{l\ge k}$. We will obtain a number l such that for any triangulation τ_3 of N_l there is a map $g\colon |\tau^{(n+1)}|\to N_k^{(n+1)}=L_2$ with c-dim $_{\mathbb{Z}[\frac{1}{p}]}(g,\,\tau_2)\le n$ and

$$\rho(g, q_k^l|_{|\tau^{(n+1)}|}) < 3 \operatorname{mesh} \tau_2 < \lambda_3/4.$$

Choose τ_3 by the following routine way. Consider a finite covering M^3 of $K_3 = N_l$ by contractible subpolyhedra with respect to a nontrivial Lebesgue number $\lambda_3 = \lambda(M^3)$. Consider the metric $\rho_1 + \rho_k + \rho_l$ on K_3 . We can regard that $d_2 = d(M^2) < \lambda_2/4$. At last choose τ_3 with mesh $\tau_3 < \lambda_3/12$, and define $L_3 = |\tau_3^{(n+1)}|$. Let $\alpha_3 \colon L_3 \hookrightarrow K_3$ be the embedding and let g_2^3 be a map $g \colon |\tau_3^{(n+1)}| \to L_2$ obtained by Lemma 6. Denote $f_2^3 = q_k^l$, and the properties (1)-(3) of Lemma 4 still hold.

Apply Lemma 7 to the sequence $\{N_r, q_r^{r+1}\}_{r\geq l}$, m=n+1 and triangulation τ_3 on $N_l=K_3$ to obtain a map $g: |\tau_2^{(n+2)}| \to L_3$ with $\rho(g, f_l^r) < 3 \operatorname{mesh} \tau_3 < \lambda_3/4$ for some r>l and arbitrary triangulation τ_4 of N_r . We choose τ_4 by using the above routine.

Define $L_4 = |\tau_4^{(n+1)}|$ and α_4 as the natural embedding. Denote q_l^r by f_3^4 . The map g gives us a projection g_3^4 . The properties (1)-(3) of Lemma 4 are satisfied.

Using this procedure we can construct two inverse systems $\{K_i, f_i^{i+1}\}$ and $\{L_i, g_i^{i+1}\}$ with a family of maps $\{\alpha_i : L_i \to K_i\}$ together with triangulations τ_i on K_i and γ_i on L_i and a family of coverings \mathcal{M}^i of K_i by contractible subpolyhedra with respect to τ_i . We define a brick metric on $\prod_{i=1}^{\infty} K_i$ and some metric ρ_i' on L_i for each i with properties (1)-(3) from Lemma 4 and

- (4) $\max\{\text{mesh } \gamma_i, \text{ mesh } g_{i-1}^i \gamma_i, \dots, \text{ mesh } g_1^i \gamma_i\} < \lambda_i$,
- (5) $L_i = |\tau_i^{(n+1)}|$,
- (6) $\operatorname{c-dim}_{\mathbb{Z}_p}(g_i^{i+1}, \gamma_i) \le n \text{ if } i \equiv 1 \mod 3,$
- (7) $\operatorname{c-dim}_{\mathbb{Z}[\frac{1}{p}]}(g_i^{i+1}, \gamma_i) \le n \text{ if } i \equiv 2 \mod 3,$
- (8) there exists an extension $\overline{g}_i: |\tau_{i+1}^{(n+2)}| \to L_i$ of the map g_i^{i+1} if $i \equiv 0 \mod 3$.

By Lemma 4 we have a map $\alpha\colon Z=\varprojlim\{L_i\}\to X=\varprojlim\{K_i\}$ with $\alpha^{-1}(x)=\varprojlim\{\alpha_i^{-1}M_{f_i^\infty(x)},\,g_i^{i+1}|\dots\}$. Denote $M_{f_i^\infty(x)}$ by M_i . By virtue of property (5), $\alpha_i^{-1}M_i=M^{(n+1)}$. Consider i=3k. By property (8) the map $g_i^{i+1}|_{M_{i+1}}$ can be extended to a map $\overline{g}_i\colon M_{i+1}^{(n+2)}\to L_i^{(n+1)}$. Since M_i is contractible then there exists a retraction $r_i\colon L_i^{(n+1)}\to M_i^{(n+1)}$. Since $M_{i+1}^{(n+1)}$ is contractible in $M_{i+1}^{(n+2)}$ and $r_i\circ\overline{g}_i\colon M_{i+1}^{(n+2)}\to M_i^{(n+1)}$ and $r_i\circ\overline{g}_i|_{M_{i+1}^{(n+1)}}=g_i^{i+1}$ then g_i^{i+1} is homotopic to constant. Hence $\operatorname{Sh}\alpha^{-1}(x)=*$ for each $x\in X$. Therefore α is a cell-like map.

Properties (4) and (6) together with Lemma 3 imply that $\operatorname{c-dim}_{\mathbb{Z}_p} Z \leq n$. Then properties (4), (7) and Lemma 3 imply that $\operatorname{c-dim}_{\mathbb{Z}[\frac{1}{2}]} \leq n$.

4. Main theorem

The aim of this paragraph is to prove the following.

Theorem 4. There exists a cell-like map $f: I^6 \to Y$ of the 6-dimensional cube with infinite-dimensional image.

The proof of Theorem 4 follows by Theorems 5 and 6 below.

Theorem 5. There exists a compactum Z with dim $Z \times Z = 5$ and a cell-like map $\phi: Z \to Y'$ with dim $Y' = \infty$.

Theorem 6 [D-R-S, Sp]. If dim $Z \times Z < n$ then every map $\psi: Z \to \mathbb{R}^n$ can be approximated by embeddings.

Indeed, embed the compactum Z from Theorem 5 in the 6-dimensional cube and consider the quotient map $f: I^6 \to Y$ of the decomposition generated by $\{\phi^{-1}(x)\}$ and singletons.

Lemma 8. Suppose that $\operatorname{c-dim}_{\mathbb{Z}_p} Z \leq n$ and $\operatorname{c-dim}_{\mathbb{Z}[\frac{1}{p}]} Z \leq n$ and Z is finite dimensional. Then $\dim Z \times Z \leq 2n+1$.

Proof. The Bokshtein inequalities [Ku] imply that $\operatorname{c-dim}_{\mathbb{Z}_q} Z \leq n$ for all primes q and $\operatorname{c-dim}_{\mathbb{Q}} Z \leq n$ where \mathbb{Q} is the rationals. The Künneth formula for fields implies that $\operatorname{c-dim}_{\mathbb{Z}_q} Z \times Z \leq 2n$ and $\operatorname{c-dim}_{\mathbb{Q}} Z \times Z \leq 2n$. By virtue of Bokshtein's theorem [Ku] $\operatorname{c-dim}_{\mathbb{Z}}(Z \times Z) = \max \operatorname{c-dim}_{\mathbb{Z}_{(q)}}(Z \times Z)$, where $\mathbb{Z}_{(q)}$ is the localization of the integers at q. By Bokshtein's inequalities [Ku, D1] $\operatorname{c-dim}_{\mathbb{Z}_{q^\infty}} \leq \operatorname{c-dim}_{\mathbb{Z}_q}$ and $\operatorname{c-dim}_{\mathbb{Z}_{(q)}} \leq \max \{\operatorname{c-dim}_{\mathbb{Q}}, \operatorname{c-dim}_{\mathbb{Z}_q^\infty} + 1\}$ it follows that $\operatorname{c-dim}_{\mathbb{Z}_{(q)}} Z \leq 2n+1$. Since Z is finite dimensional then Alexandroff's theorem [A, W] implies that $\dim Z \times Z \leq 2n+1$.

The proof of Theorem 5 follows by Theorem 3 and Lemma 8.

Problem. Suppose that $\dim Z \times Z = 2n-1$ for some compactum Z. Is it possible to imbed Z in \mathbb{R}^{2n-1} ?

REFERENCES

- [A] P. S. Alexandroff, Dimension theorie, ein Beitrag zur Geometrie der abgesehlossenen Mengen, Math. Ann. 106 (1932), 161-238.
- [Ar] S. Armentrout, Cellular decomposition of 3-manifolds that yield 3-manifolds, Mem. Amer. Math. Soc. No. 107 (1971).
- [A-H] D. W. Anderson and L. Hodgkin, the K-theory of Eilenberg-Mac Lane complexes, Topology 7 (1968), 317-329.
- [B1] R. H. Bing, A decomposition of E³ into points and tame arcs such that the decomposition space is topologically different from E³, Ann. of Math. (2) 65 (1957), 484-500.
- [B2] _____, Decomposition of E³ in topology of 3-manifolds and related topics, M. K. Fort, ed., Prentice-Hall, 1962, pp. 5-21.
- [Br] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483.
- [B-M] V. M. Bukshtaber and A. S. Mischenko, K-theory for the category of infinite cellular complexes, Math. USSR-Izv. 2 (1969), 515-556.
- [C] J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimensions three, Ann. of Math. (2) 110 (1979), 83-112.
- [Da] R. D. Daverman, Detecting the disjoint disks property, Pacific J. Math. 93:2 (1981), 277–298.
- [D1] A. N. Dranishnikov, Homological dimension theory, Uspehi Mat. Nauk 43:4 (1988), 11-55
 Russian Math. Surveys 43 (1988), 11-63.
- [D2] ____, On Alexandroff problem, Mat. Sb. 135:4 (1986), 59-111. (Russian)
- [D-S] A. N. Dranishnikov and E. V. Schepin, Cell-like maps. The problem of increase of the dimension, Russian Math. Surveys 41:6 (1986), 59-111.
- [D-R-S] A. N. Dranishnikov, D. Repovs and E. V. Schepin, On intersection of compacta of complementary dimension in euclidean space, Topology Appl. 38 (1991), 237-253.
- [E1] R. D. Edwards, Approximating certain cell-like maps by homeomorphisms, Notices Amer. Math. Soc. 24 (1977), A-649.

- [E2] _____, A theorem and a question related to cohomological dimension and cell-like maps, Notices Amer. Math. Soc. 25 (1978), A-259.
- [Ku] V. I. Kuzminov, Homological dimension theory, Russian Math. Surveys 23:5 (1968), 1-45.
- [K-W] G. Kozlowski and J. Walsh, Cell-like mappings on 3-manifolds, Topology 22 (1983), 147–153.
- [M-R] W. J. R. Mitchel and D. Repovs, The topology of cell-like mappings, Proc. Workshop in Differential Geometry and Topology (Cala Gane, 1988) (to appear).
- [Q] F. Quinn, Ends of maps. III: dimensions 4 and 5, J. Differential Geom. 17 (1982), 503-521.
- [S] L. C. Sibenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271-294.
- [Sp] S. Spiez, Imbeddings in \mathbb{R}^{2m} of m-dimensional compacta with $\dim(X \times X) < 2m$, Fund. Math. 134 (1990), 105-115.
- [Su] D. Sullivan, Geometric topology, Part I: Localization, periodicity and Galois symmetry, M.I.T., Cambridge, Mass., 1970.
- [W] J. J. Walsh, Dimension, cohomological dimension, and cell-like mappings, Lecture Notes in Math., vol. 870, Springer, 1981, pp. 105-118.

STEKLOV MATHEMATICAL INSTITUTE, Moscow 117966, Russia E-mail address: dranish@top.mian.su

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14853-7901